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1.Introduction 
 

Mathematical models are invaluable in studying natural and 
artificial systems, helping scientists and engineers to predict and analyze 
complex phenomena. These models abstract real-world problems into 
mathematical language, enabling the derivation of insights that might be 
unattainable otherwise. Among the mathematical tools employed, 
differential equations stand out due to their ability to describe changes 
over time and space in various fields, such as physics, biology, 
economics, and chemistry. This chapter delves into the fundamentals of 
mathematical modeling, emphasizing the role of differential equations, 
and provides detailed examples illustrating their application ([1-5]).  

When studying an event in nature or in different scientific fields, 
a structure that includes the more influential and important characteristics 
of the event is required. For example, for an architect, a model of the 
house to be built, for a mechanical engineer, the technical characteristics 
of the machine to be made, for an astronomer, the orbital paths of 
celestial bodies, and other similar characteristics are important. A 
structure that reflects the key characteristics of the object being studied, 
ignoring secondary characteristics that have little impact on the event, is 
called the model of the object. Modeling is the process of studying the 
real event on the model. 

By creating a model, the real event is simplified, making it 
possible to study. While the model and the original are very close to each 
other, they are still different. Therefore, it is necessary to focus on both 
the similarities and differences between the model and the original. The 
model should not be exactly the same as the original; otherwise, it 
wouldn't be a model, but rather a reflection of the event in a mirror. 
However, the model must include the important characteristics of the 
original, otherwise, the differences would be too large, and it would not 
be possible to study the rules of the original with such a model. 

The main advantage of a mathematical model over other types of 
models is that different events, which are completely distinct in their 
physical content, can be expressed by the same mathematical model. For 
example, there are different problems related to economics, sociology, 
and biology that can be studied using the same mathematical model. 

When creating a mathematical model, the researcher must 
examine these events in depth and detail, identify their important 
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parameters based on experimental results, and pay attention to the mutual 
laws (rules) between them. 

Many studies show that trying to reflect a large number of real 
parameters or various characteristics of an object or event in the model 
makes solving the problem more difficult, rather than simplifying it. This 
often complicates the model to such an extent that it becomes impossible 
to work with. 

Mathematical modeling is a transition towards abstracting special 
cases using symbols, or expressing them with various symbols. By using 
symbols, specific values of numbers can be represented. For example, by 
saying “𝑏𝑏𝑏𝑏” is a decimal number, we can represent all numbers like 10, 
100, 1000, etc. Symbols make it easier to express arithmetic operations 
(addition, subtraction, exponentiation, etc.). Now, let’s consider the 
mutual relationship between symbols. For example, let the parameters of 
the related event be denoted by 𝑥𝑥𝑥𝑥 and the others by 𝑦𝑦𝑦𝑦. If one of them, for 
example, changes with 𝑥𝑥𝑥𝑥, then the event can be expressed as 

𝑦𝑦𝑦𝑦 = 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥). 

When the relationship between the events changes like  

𝑥𝑥𝑥𝑥 = 1,2,3,4,5,... and 𝑦𝑦𝑦𝑦 = 1,4,9,16,25,..., 

the functional relationship between the events can be shown as  

𝑦𝑦𝑦𝑦 = 𝑥𝑥𝑥𝑥². 

Along with such simple relationships, more complex ones are also 
encountered. In such cases, the relationship between all (𝑥𝑥𝑥𝑥₁, 𝑥𝑥𝑥𝑥₂, ..., 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛) 
and 𝑦𝑦𝑦𝑦 events can be expressed as 

𝑦𝑦𝑦𝑦 = 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥₁, 𝑥𝑥𝑥𝑥₂, ..., 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛) 

after proper notations. Therefore, when studying any physical event, the 
fundamental laws of this event are expressed in mathematical form or 
formulas using symbols. 

In theory and experiments, not only statistical events but also dynamic 
events, which change over time, are encountered. These kinds of events 
are usually expressed with differential equations. Equations that include 
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the derivative of an unknown function are called differential equations. 
For example, when the unknown function is  

𝑦𝑦𝑦𝑦 = 𝑦𝑦𝑦𝑦(𝑥𝑥𝑥𝑥), 

the equation  

𝑦𝑦𝑦𝑦′ = 𝑒𝑒𝑒𝑒ˣ 

is a differential equation, and it is clear that this equation satisfies the 
function 

𝑦𝑦𝑦𝑦 = 𝑒𝑒𝑒𝑒ˣ. 

When creating a model for a real event, the resulting differential 
equation is called the differential model of the real event. A differential 
model is a special case of the mathematical model. It should be noted that 
differential models have different types depending on the physical event. 
We will only discuss mathematical models expressed with differential 
equations that involve an unknown function depending on a single 
independent variable. 

When creating a mathematical model, it was stated that a 
scientific law or rule related to the event is important. For example, in the 
mechanical branch of physics, we benefit from Newton's laws, in 
electricity from Kirchhoff's laws, and in studying the rate of chemical 
reactions, we use the law of mass action. 

Sometimes, events occur in nature where no law is available to 
express the differential model. In this case, different assumptions 
(hypotheses) about the change in parameters are accepted after being 
examined through experiments. Not every differential model can be 
easily solved. Let’s compare this with algebraic equations. Solutions of 
first and second-degree algebraic equations can be expressed with simple 
radicals (such as taking roots). While solutions to third and fourth-degree 
algebraic equations can also be expressed with radicals, the presence of 
many radicals in the formula makes the expression difficult. In equations 
of degree higher than four, it is not possible to express the solution with 
radicals 

Although various methods are used to solve differential 
equations, the expressions obtained in the solution may not always be 
easy to analyze, meaning that the relationships between the parameters 



 . 11Researches and Evaluations in the Field of Mathematics

the derivative of an unknown function are called differential equations. 
For example, when the unknown function is  

𝑦𝑦𝑦𝑦 = 𝑦𝑦𝑦𝑦(𝑥𝑥𝑥𝑥), 

the equation  

𝑦𝑦𝑦𝑦′ = 𝑒𝑒𝑒𝑒ˣ 

is a differential equation, and it is clear that this equation satisfies the 
function 

𝑦𝑦𝑦𝑦 = 𝑒𝑒𝑒𝑒ˣ. 

When creating a model for a real event, the resulting differential 
equation is called the differential model of the real event. A differential 
model is a special case of the mathematical model. It should be noted that 
differential models have different types depending on the physical event. 
We will only discuss mathematical models expressed with differential 
equations that involve an unknown function depending on a single 
independent variable. 

When creating a mathematical model, it was stated that a 
scientific law or rule related to the event is important. For example, in the 
mechanical branch of physics, we benefit from Newton's laws, in 
electricity from Kirchhoff's laws, and in studying the rate of chemical 
reactions, we use the law of mass action. 

Sometimes, events occur in nature where no law is available to 
express the differential model. In this case, different assumptions 
(hypotheses) about the change in parameters are accepted after being 
examined through experiments. Not every differential model can be 
easily solved. Let’s compare this with algebraic equations. Solutions of 
first and second-degree algebraic equations can be expressed with simple 
radicals (such as taking roots). While solutions to third and fourth-degree 
algebraic equations can also be expressed with radicals, the presence of 
many radicals in the formula makes the expression difficult. In equations 
of degree higher than four, it is not possible to express the solution with 
radicals 

Although various methods are used to solve differential 
equations, the expressions obtained in the solution may not always be 
easy to analyze, meaning that the relationships between the parameters 

emphasized in models can be complex. In such cases, some information 
about the necessary properties of the solution may be sufficient. The 
properties of the solution to a differential equation are examined in the 
qualitative theory of differential equations. 

To construct a mathematical model at any given time, a set of general 
conditions must be met. Some of these conditions are as follows: 

1. The process must be universal, meaning it should evolve 
according to certain laws within a measurable period of time. The 
governing laws of the process do not change over time during the 
process being studied. For example, many processes in classical 
mechanics and electrical circuits can be viewed as universal 
processes. 

 

2. The process must be describable with the help of a finite number 
of parameters mathematically. For example, in Newtonian 
mechanics, the free motion of a particle is determined uniquely 
by the coordinates (𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), 𝑦𝑦𝑦𝑦(𝑡𝑡𝑡𝑡), 𝑧𝑧𝑧𝑧(𝑡𝑡𝑡𝑡)) at each time 𝑡𝑡𝑡𝑡 and the 
velocity vector (�̇�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), �̇�𝑦𝑦𝑦(𝑡𝑡𝑡𝑡), �̇�𝑧𝑧𝑧(𝑡𝑡𝑡𝑡)), meaning the particle’s motion 
can be described mathematically with 6 parameters. Similarly, 
the motion of 𝑛𝑛𝑛𝑛 particles can be described mathematically with 
6𝑛𝑛𝑛𝑛 parameters. 

 

 

3. The process must be describable using differentiable functions. 
For example, the orbit and velocity of a satellite orbiting the 
Earth can be expressed using differentiable functions, so this 
motion can be described by an ordinary differential equation. 
However, the Brownian motion of a particle, which traces a 
curve with an infinite number of zigzags within a finite time, 
cannot be expressed by a differentiable function. Therefore, it 
cannot be expected that this motion can be described by an 
ordinary differential equation. 
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4. The process must be deterministic. In other words, given the state 
of the process at any moment, the past and future should be 
uniquely determined. For example, if the coordinates and 
velocity of a cannonball at any point in its trajectory are known, 
its origin and impact point can be determined using the motion 
laws given by Newton. In contrast, if the temperature at all points 
in a medium is known at a particular time (𝑡𝑡𝑡𝑡 = 𝑡𝑡𝑡𝑡₀), it is not 
possible to uniquely determine the temperature of the medium 
(i.e., the event's past) at any time before (𝑡𝑡𝑡𝑡 < 𝑡𝑡𝑡𝑡₀). 

 

There is no special method to create the differential model of an 
event. However, for many cases, the following general procedures need 
to be followed: 

1. The conditions of the event are examined, and appropriate data 
and charts are prepared to understand the event. 

 

2. An equation is created according to the laws governing the event. 

 

3. The created equation is integrated, and the general solution of the 
equation is found. 

 

4. The specific solution, consistent with the initially given 
conditions, is found. 

 

5. If necessary, auxiliary parameters are found by utilizing 
additional conditions (for example, density coefficient, thermal 
conductivity coefficient, etc.) 
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conditions, is found. 

 

5. If necessary, auxiliary parameters are found by utilizing 
additional conditions (for example, density coefficient, thermal 
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6. A general rule describing the event is expressed in a formula, and 
the required values are found. 

 

 

7. The results are examined and compared with experimental 
results. 

 

 

2. Some Examples for Mathematical Models  
 

Example 1 (The Importance of Advertising in Economics): 

 Advertising is done on the radio and television for the sale of product B. 
Through the exchange of information among consumers, more is learned 
about the product. After the advertisements, the rate of change in the 
number of consumers who know about product B is proportional to the 
number of people who know and don’t know about the product. In this 
case, find the spread rate of the advertisement. 

Solution:  

Let x(t) be the number of consumers who know about the product at time 
t. The rate of change of the number of consumers who know about the 
product is dx/dt. Since the promotion is proportional to this rate due to the 
relationships among consumers, the equation is: 

 

dx/dt = k ⋅ x ⋅ (N − x) 

 

Here, k is a positive constant of proportionality. This equation can be 
integrated to yield: 

 

1/x ln(N − x) = k ⋅ t + c 
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Or, by letting N ⋅ c = c1 and A = e^c1, we get: 

 

x/(N − x) = A ⋅ e^(N ⋅ k ⋅ t) 

 

Therefore: 

x = N/(1 + P ⋅ e^(−N ⋅ k ⋅ t)) 

 

This equation is known as the logistic curve in economics. 

 

Now, if we use the initial condition x(0) = N in this equation, we get: 

 

x = N/(1 + (γ − 1) ⋅ e^(−N ⋅ k ⋅ t)) 

 

Example 2 (Physical): 

 Let the velocity of a particle moving along a straight line at time t be v(t). 
Find the position function S(t) of the particle, which shows its distance 
from the origin at time t. 

 

Solution:  

Let the straight line be the Ox-axis. If the distance from the origin at time 
t is S(t), then since the derivative represents velocity, we have: 

 

ds/dt = v(t) 

 

Assuming that v(t) is a continuous function, integrating gives the position 
function: 
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By giving different values to c, we get different position functions. To 
find the specific position function for a particle that is at a distance S0 
from the origin at time t0, we set c = S0.  

Thus, the motion equation becomes: 

S(t) = ∫[t0 to t] v(t)dt + S0 

This relation describes a specific motion. 

 

Example 3 (Biology):  

In an environment with sufficient nutrients, the growth rate of a bacterial 
colony is directly proportional to the number of bacteria in the 
environment. Find the growth rule of these bacteria. 

 

Solution:  

Let x(t) be the number of bacteria in the environment at time t.  

According to the problem’s condition, the rate of change of the number of 
bacteria is proportional to the number of bacteria, so: 

dx/dt = k ⋅ x(t) 

 

where k > 0 is a constant of proportionality that depends on the bacterial 
species.  

From this, we get: 

x(t) = c ⋅ e^(k ⋅ t) 
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To obtain a specific solution, we need to know the initial number of 
bacteria x0 at time t0. Substituting these values gives: 

 

x(t) = x0 ⋅ e^(k(t − t0)) 

 

This is an example of exponential growth. 

 

Example 4 (Chemical):  

In the chemical reaction between substances A and B, a substance C is 
formed. The rate of the reaction is proportional to the amount of the 
substances that have not yet reacted. Find the amount of substance C 
formed. 

 

Solution: There are two cases to consider. In the first case, when 
substance A is converted into C, the rate of the reaction is proportional to 
the remaining amount of A. Thus: 

 

dx/dt = k ⋅ (a − x) 

 

where a − x represents the remaining amount of substance A, and k > 0 is 
the proportionality constant. 

In the second case, when both substances A and B react to form C, the 
rate is proportional to the product of the remaining amounts of A and B. 
Thus: 

 

dx/dt = k ⋅ (a − x)(b − x) 

 

where a and b are the initial amounts of substances A and B, respectively, 
and k > 0 is the proportionality constant. 
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dx/dt = k ⋅ (a − x)(b − x) 

 

where a and b are the initial amounts of substances A and B, respectively, 
and k > 0 is the proportionality constant. 

Using the initial condition x(0) = 0, in the first case, the equation 
becomes: 

 

dx/(a − x) = −k dt 

 

Integrating gives: 

 

x = a(1 − e^(−k ⋅ t)) 

 

In the second case, solving yields: 

 

x = (a ⋅ b)/(b − a) ⋅ (1 − e^(−k ⋅ (b − a) ⋅ t)) 

 

Example 5:  

According to economic studies, the demand for essential consumer goods 
y is related to the demand for luxury goods z and income through the 
following relations: 

 

y(x) = b1(x − a1)/(x − c1), x > a1 

 

z(x) = b2x(x − a2)/(x − c2), x > a1, a2 > a1 

 

Here, a1 and a2 represent income thresholds for purchasing the respective 
goods. As x → ∞: 
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lim x→∞,  y(x) = b1 

 

lim x→∞,  z(x) = ∞ 

 

Thus, as income increases, the demand for essential goods becomes 
limited, while demand for luxury goods increases without limit. 

 

Example 6: 

 Suppose the cost of a product y is related to its volume x by the equation: 

 

y = 10x + 50 

 

Find the marginal cost for producing 100 units of the product. 

 

Solution:  

The marginal cost is given by the derivative y′(x). For x = 100, we find: 

 

y′(100) = 10 

 

Thus, producing one more unit when 100 units are produced costs 10 
units of currency. 
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3. Applications and Implications 

1. Predictive Analysis 

Models allow for forecasting, such as predicting the spread of diseases 
using SIR models or estimating market trends. 

2. Optimization 

In engineering, differential equations help optimize processes, like 
minimizing energy usage or maximizing structural integrity. 

3. Understanding Phenomena 

By solving models, we gain insights into underlying mechanisms, like 
turbulence in fluids or oscillations in circuits. 

 

4. Challenges in Mathematical Modeling 

• Complexity: Real-world systems often involve numerous 
interacting variables, making models computationally intensive. 

• Nonlinearity: Many systems exhibit nonlinear behavior, 
complicating analytical solutions. 

• Validation: Experimental validation can be resource-intensive. 

Despite these challenges, advances in computational power and 
numerical techniques have significantly enhanced the scope of 
mathematical modeling. 

 

5. Conclusion 

Mathematical modeling, particularly through differential equations, is a 
cornerstone of scientific inquiry. It bridges theoretical principles and real-
world applications, enabling the analysis and prediction of complex 
systems. By refining models and leveraging computational tools, 
researchers can continue to unlock the mysteries of nature and design 
innovative solutions for modern challenges. 
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1. INTRODUCTION 
 

Given a field  𝐹𝐹𝐹𝐹 with characteristic zero. By 𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛(𝐹𝐹𝐹𝐹), we denote the algebra of 
all 𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛 matrices over 𝐹𝐹𝐹𝐹. This algebra turns into a Lie algebra structure with  
Lie product  which is defined by [𝑈𝑈𝑈𝑈,𝑊𝑊𝑊𝑊] = 𝑈𝑈𝑈𝑈𝑊𝑊𝑊𝑊 −𝑊𝑊𝑊𝑊𝑈𝑈𝑈𝑈, where 𝑈𝑈𝑈𝑈𝑊𝑊𝑊𝑊 is the 
ordinary multiplication of the matrices 𝑈𝑈𝑈𝑈 and 𝑊𝑊𝑊𝑊 (for more details see [2, 3]), 
and it is denoted by 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛(𝐹𝐹𝐹𝐹). Let 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛(𝐹𝐹𝐹𝐹) be a set of all skew-symmetric 
matrices. We say that a matrix 𝑈𝑈𝑈𝑈 is  skew-symmetric if it holds that 𝑈𝑈𝑈𝑈𝑇𝑇𝑇𝑇 = −𝑈𝑈𝑈𝑈, 
where 𝑈𝑈𝑈𝑈𝑇𝑇𝑇𝑇 is the transpose of 𝑈𝑈𝑈𝑈.  

For all 𝑈𝑈𝑈𝑈,𝑊𝑊𝑊𝑊 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛(𝐹𝐹𝐹𝐹), we have  [𝑈𝑈𝑈𝑈,𝑊𝑊𝑊𝑊] ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛(𝐹𝐹𝐹𝐹),   that is, 

[𝑈𝑈𝑈𝑈,𝑊𝑊𝑊𝑊]𝑇𝑇𝑇𝑇 = (𝑈𝑈𝑈𝑈𝑊𝑊𝑊𝑊 −𝑊𝑊𝑊𝑊𝑈𝑈𝑈𝑈)𝑇𝑇𝑇𝑇 

                     = (𝑈𝑈𝑈𝑈𝑊𝑊𝑊𝑊)𝑇𝑇𝑇𝑇 − (𝑊𝑊𝑊𝑊𝑈𝑈𝑈𝑈)𝑇𝑇𝑇𝑇 

                                       = 𝑊𝑊𝑊𝑊𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈𝑇𝑇𝑇𝑇 − 𝑈𝑈𝑈𝑈𝑇𝑇𝑇𝑇𝑊𝑊𝑊𝑊𝑇𝑇𝑇𝑇  (since 𝑊𝑊𝑊𝑊𝑇𝑇𝑇𝑇 

                 = −𝑊𝑊𝑊𝑊,𝑈𝑈𝑈𝑈𝑇𝑇𝑇𝑇 = −𝑈𝑈𝑈𝑈) 

        = 𝑊𝑊𝑊𝑊𝑈𝑈𝑈𝑈 − 𝑈𝑈𝑈𝑈𝑊𝑊𝑊𝑊 

                                              = [𝑊𝑊𝑊𝑊,𝑈𝑈𝑈𝑈] (anti − commutativity) 

                                                                = −[𝑈𝑈𝑈𝑈,𝑊𝑊𝑊𝑊]. 

 Thus, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛(𝐹𝐹𝐹𝐹)  is a subalgebra of 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛(𝐹𝐹𝐹𝐹). Under natural embeddings  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛(𝐹𝐹𝐹𝐹)

→ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛+1(𝐹𝐹𝐹𝐹)  defined by 

𝑈𝑈𝑈𝑈 → �𝑈𝑈𝑈𝑈 0
0 0� 

the direct limit  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∞(𝐹𝐹𝐹𝐹) of  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛(𝐹𝐹𝐹𝐹)  is a countably dimensional simple Lie 
algebra. It is straightforward to verify that this is a Lie algebra consisting of 
infinite  ℕ × ℕ matrices 𝑈𝑈𝑈𝑈 satisfying skew-symmetric property. 

 In this work, our purpose is to define a new uncountably dimensional 
Lie algebra occurring  with infinite matrices and to show that this Lie 
algebra is  simple. For this firstly, we denote a set of all infinite ℕ × ℕ 
matrices over  𝐹𝐹𝐹𝐹 which have just finite number of non-zero rows by 
𝑀𝑀𝑀𝑀(∞,𝐹𝐹𝐹𝐹). Recall that the addition of two matrices, the matrix 
multiplication of two matrices and also the multiplication of a matrix with 
a scalar in 𝐹𝐹𝐹𝐹  are well-defined. Thus,  𝑀𝑀𝑀𝑀(∞,𝐹𝐹𝐹𝐹) is an associative 𝐹𝐹𝐹𝐹-
algebra. Hence, the 𝐹𝐹𝐹𝐹-algebra  𝑀𝑀𝑀𝑀(∞,𝐹𝐹𝐹𝐹)  becomes  a Lie algebra with the 
product  [𝑈𝑈𝑈𝑈,𝑊𝑊𝑊𝑊] = 𝑈𝑈𝑈𝑈𝑊𝑊𝑊𝑊 −𝑊𝑊𝑊𝑊𝑈𝑈𝑈𝑈 and it is denoted by  𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(∞,𝐹𝐹𝐹𝐹).   A basis of 
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the algebra 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(∞,𝐹𝐹𝐹𝐹)   consists of the matrix units 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 for 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ∈ ℕ which is 
the infinite matrix whose (𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗)-th entry is 1 and all other entries are 0.  The 
product of  𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 is given by following rule 

                                               �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘� = 𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘−𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖                              (1) 

where 𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the Kronecker delta function which is defined by  

𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = {1, if 𝑖𝑖𝑖𝑖 = 𝑗𝑗𝑗𝑗
0,       otherwise} 

(see [1]). 

We denote a Lie subalgebra of 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(∞,𝐹𝐹𝐹𝐹)  having all skew-symmetric 
matrices 𝑈𝑈𝑈𝑈 by 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∞,𝐹𝐹𝐹𝐹).  Recall that the set   �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ∈ ℕ}  forms a 
generating set for 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛(𝐹𝐹𝐹𝐹) and the set �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ∈ ℕ, 𝑖𝑖𝑖𝑖 < 𝑗𝑗𝑗𝑗} forms a 
basis of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛(𝐹𝐹𝐹𝐹). Therefore,  𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛(𝐹𝐹𝐹𝐹) and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛(𝐹𝐹𝐹𝐹) are countably 
dimensional. Obviously, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(∞,𝐹𝐹𝐹𝐹) and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∞,𝐹𝐹𝐹𝐹) are uncountably 
dimensional. Arbitrary element in 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(∞,𝐹𝐹𝐹𝐹) is spanned by the set 
{𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|  𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ∈ ℕ}.  Similarly, the set �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ∈ ℕ, 𝑖𝑖𝑖𝑖 < 𝑗𝑗𝑗𝑗} spans 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∞,𝐹𝐹𝐹𝐹).  We use the symbol 0 for the matrix whose entries are all zero. 

 

2. MAIN RESULT 

 

Now, we are prepared to give our main theorem. 

Theorem 2.1.  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∞,𝐹𝐹𝐹𝐹) is an uncountably dimensional simple Lie 
algebra. 

Proof. Consider that 𝐾𝐾𝐾𝐾 is a non-zero ideal of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∞,𝐹𝐹𝐹𝐹). First of all, we 
remark that it is sufficient to show that for any 𝑖𝑖𝑖𝑖 < 𝑗𝑗𝑗𝑗, we have  𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈
𝐾𝐾𝐾𝐾. Suppose that 𝑊𝑊𝑊𝑊 ∈ 𝐾𝐾𝐾𝐾 is a non-zero matrix as the following 

𝑊𝑊𝑊𝑊 = 𝑐𝑐𝑐𝑐12(𝑢𝑢𝑢𝑢12 − 𝑢𝑢𝑢𝑢21) + 𝑐𝑐𝑐𝑐23(𝑢𝑢𝑢𝑢23 − 𝑢𝑢𝑢𝑢32) + ⋯+ 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1,𝑛𝑛𝑛𝑛(𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛−1,𝑛𝑛𝑛𝑛 − 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛−1) 

and 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘−1,𝑘𝑘𝑘𝑘 ≠ 0   (1 < 𝑘𝑘𝑘𝑘 ≤ 𝑛𝑛𝑛𝑛).  Here, it is clear to observe that                                                             
                                 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+1 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖+1,𝑖𝑖𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆 for 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛 − 1.  

By using the product (1), we infer that 



24  . Nil MANSUROĞLU

 �𝑊𝑊𝑊𝑊,𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘,𝑛𝑛𝑛𝑛+1 − 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛+1,𝑘𝑘𝑘𝑘�          
= �𝑐𝑐𝑐𝑐12(𝑢𝑢𝑢𝑢12 − 𝑢𝑢𝑢𝑢21) + 𝑐𝑐𝑐𝑐23(𝑢𝑢𝑢𝑢23 − 𝑢𝑢𝑢𝑢32) + ⋯
+ 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1,𝑛𝑛𝑛𝑛�𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛−1,𝑛𝑛𝑛𝑛 − 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛−1�,𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘,𝑛𝑛𝑛𝑛+1 − 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛+1,𝑘𝑘𝑘𝑘�       

                 = 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘−1,𝑘𝑘𝑘𝑘�𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘−1,𝑘𝑘𝑘𝑘 − 𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘,𝑘𝑘𝑘𝑘−1,𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘,𝑛𝑛𝑛𝑛+1 − 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛+1,𝑘𝑘𝑘𝑘� 

   = 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘−1,𝑘𝑘𝑘𝑘(𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘−1,𝑛𝑛𝑛𝑛+1 − 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛+1,𝑘𝑘𝑘𝑘−1) ∈ 𝐾𝐾𝐾𝐾 

and so 𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘−1,𝑛𝑛𝑛𝑛+1 − 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛+1,𝑘𝑘𝑘𝑘−1   is in 𝐾𝐾𝐾𝐾. Moreover, for each 𝑝𝑝𝑝𝑝 ≥ 1,  we 
obtain 

�𝑊𝑊𝑊𝑊,𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘,𝑛𝑛𝑛𝑛+𝑝𝑝𝑝𝑝 − 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛+𝑝𝑝𝑝𝑝,𝑘𝑘𝑘𝑘�
= �𝑐𝑐𝑐𝑐12(𝑢𝑢𝑢𝑢12 − 𝑢𝑢𝑢𝑢21) + 𝑐𝑐𝑐𝑐23(𝑢𝑢𝑢𝑢23 − 𝑢𝑢𝑢𝑢32) + ⋯
+ 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1,𝑛𝑛𝑛𝑛�𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛−1,𝑛𝑛𝑛𝑛 − 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛−1�,𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘,𝑛𝑛𝑛𝑛+𝑝𝑝𝑝𝑝 − 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛+𝑝𝑝𝑝𝑝,𝑘𝑘𝑘𝑘� 

                      = 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘−1,𝑘𝑘𝑘𝑘�𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘−1,𝑘𝑘𝑘𝑘 − 𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘,𝑘𝑘𝑘𝑘−1,𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘,𝑛𝑛𝑛𝑛+𝑝𝑝𝑝𝑝 − 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛+𝑝𝑝𝑝𝑝,𝑘𝑘𝑘𝑘� 

        = 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘−1,𝑘𝑘𝑘𝑘(𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘−1,𝑛𝑛𝑛𝑛+𝑝𝑝𝑝𝑝 − 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛+𝑝𝑝𝑝𝑝,𝑘𝑘𝑘𝑘−1) ∈ 𝐾𝐾𝐾𝐾 

and hence  𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘−1,𝑛𝑛𝑛𝑛+𝑝𝑝𝑝𝑝 − 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛+𝑝𝑝𝑝𝑝,𝑘𝑘𝑘𝑘−1 ∈ 𝐾𝐾𝐾𝐾  for each 𝑝𝑝𝑝𝑝 ≥ 1.  

Now we focus on the case that 𝑖𝑖𝑖𝑖 ≠ 𝑘𝑘𝑘𝑘 and  1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛,  by doing a 
straightforward 

calculation we have 
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= 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘−1,𝑘𝑘𝑘𝑘�𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘−1,𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘−1� ∈ 𝐾𝐾𝐾𝐾. 

This means that  𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘−1,𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘−1 ∈ 𝐾𝐾𝐾𝐾.  Consequently, we observe that all 
generators of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∞,𝐹𝐹𝐹𝐹) belong to 𝐾𝐾𝐾𝐾. This completes the proof. 
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